Explicit Linear Kernels via Dynamic Programming
نویسندگان
چکیده
منابع مشابه
Explicit Linear Kernels via Dynamic Programming
Several algorithmic meta-theorems on kernelization have appeared in the last years, starting with the result of Bodlaender et al. [FOCS 2009] on graphs of bounded genus, then generalized by Fomin et al. [SODA 2010] to graphs excluding a fixed minor, and by Kim et al. [ICALP 2013] to graphs excluding a fixed topological minor. Typically, these results guarantee the existence of linear or polynom...
متن کاملApproximate Dynamic Programming via Linear Programming
The curse of dimensionality gives rise to prohibitive computational requirements that render infeasible the exact solution of largescale stochastic control problems. We study an efficient method based on linear programming for approximating solutions to such problems. The approach "fits" a linear combination of preselected basis functions to the dynamic programming costtogo function. We develop...
متن کاملExplicit linear kernels for packing problems
During the last years, several algorithmic meta-theorems have appeared (Bodlaender et al. [FOCS 2009], Fomin et al. [SODA 2010], Kim et al. [ICALP 2013]) guaranteeing the existence of linear kernels on sparse graphs for problems satisfying some generic conditions. The drawback of such general results is that it is usually not clear how to derive from them constructive kernels with reasonably lo...
متن کاملApproximate Dynamic Programming via a Smoothed Linear Program
We present a novel linear program for the approximation of the dynamic programming costto-go function in high-dimensional stochastic control problems. LP approaches to approximate DP have typically relied on a natural ‘projection’ of a well studied linear program for exact dynamic programming. Such programs restrict attention to approximations that are lower bounds to the optimal cost-to-go fun...
متن کاملDynamic Programming via
Dynamic programming is an important algorithm design technique. It is used for solving problems whose solutions involve recursively solving subproblems that share subsubproblems. While a straightforward recursive program solves common subsubproblems repeatedly and often takes exponential time, a dynamic programming algorithm solves every subsubproblem just once, saves the result, reuses it when...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Discrete Mathematics
سال: 2015
ISSN: 0895-4801,1095-7146
DOI: 10.1137/140968975